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Abstract 

Direct methods are applied to the difference structure 
factors for a non-centrosymmetric structure con- 
raining one or more heavy atoms in known positions, 
such that the known atoms form either a centro- 
symmetric arrangement, or a translational subcell, or 
both. The present procedure is initiated by subtracting 
the known heavy-atom contribution from the observed 
structure factor (assuming that the observed and 
calculated structure factors have the same phase) to 
obtain approximate values of the magnitude and phase 
of the light-atom contribution. Either about ten 
reflections, which are most inconsistent with respect to 
the ~2 formula, are selected as 'enantiomorph dis- 
criminating' reflections, or about ten reflections which 
are 'subcell' extinct are selected as (enantiomorph and) 
origin choices and symbols are assigned to these 
reflections. The ~2 phase relationship is used to find 
relations between the symbols. The analysis of the 
symbols, together with one or more arbitrary choices to 
fix the enantiomorph and/or the origin, will lead to a 
unique solution of the symbols in terms of numerical 
values. Further refinement of the difference structure 
factors by the conventional DIRDIF procedure fol- 
lowed by a Fourier synthesis leads to an electron 
density map where the additional heavy-atom sym- 
metry has been destroyed. 

Introduction 

In our DIRDIF procedures (see part I: Van den Hark, 
Prick & Beurskens, 1976, and references therein), 
direct methods are applied to the solution of partially 
known structures, usually containing heavy atoms. 
Difference structure factors are calculated, making the 
usual assumption that the observed and calculated 
structure factors have the same phase. These are then 
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'normalized', and both amplitudes and phases are 
refined by a weighted tangent procedure. This approach 
provides a very powerful tool for the solution of those 
structures where the known heavy atoms are in special 
or pseudo-special positions, or otherwise form a 
structure with higher symmetry than required by the 
space-group symmetry. Two causes which may result 
in this higher symmetry are treated in this paper: 

(i) The enantiomorph problem: the known heavy 
atoms form a centrosymmetric arrangement. A con- 
ventional Fourier synthesis will lead to double image, 
i.e. a superposition of the structure and its 
enantiomorph. 

(ii) The origin problem: the known atoms form a 
subcell. A conventional Fourier synthesis will lead to a 
multiple image, i.e. a superposition of the true supercell 
with its translation images. 

In the preceding paper (part II: Prick, Beurskens & 
Gould, 1978) we discussed the principles of enantio- 
morph fixation for the unknown part of the structure. 
In the present paper we describe the enantiomorph- and 
origin-fixation procedure for all possible cases where 
the known heavy atoms do not, at least in principle, 
completely determine the structure. 

Notation 

IFobsl 

F. 

q~n 
FL 

For reflection h (meaning hkl) we define: 

observed structure-factor amplitude on absolute 
scale 
calculated contribution of the known part of the 
structure ('heavy' atoms) 
phase of F H 
contribution of the remaining part of the 
structure ('light' atoms), or the most probable 
estimate for this contribution 

~p/_ phase of Ft_ 
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AF1 

El 
wl 

= (IFob~l -- IFul) exp(i09n), the conventional 
difference Fourier coefficient 
phase of AF 1 
'normalized' analogue of AF~ 
weight associated with the reliability of AFt and 
E~ [see part I; for a comparison with the weight 
given by Sim (1960) see Beurskens, Prick, 
Doesburg & Gould, 1979]; 0 < W I _< 1. 

Methods  

The principles of enantiomorph discrimination are 
described in § (i), and of origin fixation in § (ii); the 
case where both enantiomorph and origin fixation are 
needed is discussed in § (iii). 

(i) Enantiomorph f ixation 

For the crystallographic problem at hand, let us 
assume a non-centrosymmetric structure for which we 
have found (for instance by inspection of the Patterson 
synthesis) a centrosymmetric arrangement of heavy 
atoms (ia). The case where we have only one heavy 
atom per unit cell is given in (ib). 

(ia) Two or more atoms 

For each reflection h there are two possible values 
for the calculated phase: ~0 n = 2nh . r  0 or ~0 n = 
2nh. r  0 + n, where r 0 is the position of the centre of 
symmetry. The origin is shifted to this point, and the 
translational part of each symmetry element is modified 
accordingly. Then all calculated phases are either 
~0 n = 0 or ~0 n = n. Reflections selected on the basis of 
values for IEll and weight W~ are used to initiate the 
procedure to be described. However, we cannot solve 
the enantiomorph problem until we insert phases which 
substantially deviate from the values 0 or n. 

Enantiomorph-diseriminating reflections. In some 
space groups it is possible to choose projection 
reflections which must have OL = +_ln by symmetry; 
these reflections must have IFHI = 0. We do not use 
these reflections, as it is not considered advisable to rely 
entirely on a small number of special reflections. 

We determine enantiomorph-sensitive reflections by 
inspecting ~2 interactions and by selecting the reflec- 
tions that are most inconsistent with respect to the Z2 
relationship. That is, when ~0 L is found as 0 and also as 
n, the true value is expected to be neither 0 nor 7~, but in 
between, which can be about +½n or -½n. The 
assignment of a phase ½n to a symbol for which values 
0 and n were found has also been used by Karle (1970). 

In this paper we make use of the numerical results 
obtained for a number of test structures as described by 
Prick (1979). Various executional parameters to be 
quoted below are based upon the results of practical 
applications. 

We select two sets of reflections: 

num: about 100 reflections with IEll > 1.0 and 
W~ > 0.9; i.e. reflections for which a sufficiently 
accurate value of the numerical phase q~L is 
known: for ~0~ uma value equal to qh (0 or 180 °) is 
assumed; 

ena: a large number of reflections with IEII > 1.0 and 
WI < 0.9; i.e. reflections for which the phase ~0 L 
is not known, and which can be used for 
enantiomorph discrimination, ~0~_ "~ can have any 
value. 

Using the set num as input to a Z2 generation 
procedure, all contributions to reflections of the set ena 
are collected. One Y2 term is 

qg~na(h)~-qf~um(k)+ qfi'~um(h - k). (1) 

Such a term is weighted by 

Khk = 203 0"23/2[E,(h) El(k ) E , ( k -  h)[ Wl(h ) Wl(k - h) 

(2) 

with o, = Y.N~= l Zy,  N L is the number of unkown 
('light') atoms. The weighted average for ~0~"a(h) is 
obtained (by tangent formula) and the conventional 
measure for the reliability of the result is given by a h 
(Karle & Karle, 1966), with 

~ : { ~ Khk COS[Cp(k)+ 09(h -- k)]} 2 

/ 2 
+ Khk sin[~0(k) + ~o(h-- k)l (3) 

The maximum possible result of (3) obtained when 
there are no inconsistencies is defined by 

flh = Y. Khk" (4) 
k 

The enantiomorph-discriminating reflection should 
have small a h (inconsistent contributions) and large/3, 
(many terms involved). Therefore we define the 
following enantiomorph discriminator: 

Ch = /~' ( f ib -  0q,) (5a) 
% 

unless 5a h < ft,; then 

C. = 5 ( & -  %). (5b) 

The numerical value of C h measures the degree of 
inconsistency in the ~2 terms for the reflection h. 

Reflections to be used in the following symbolic- 
phase expansion procedure should have large IEI 
values as well. Therefore we use IE~(h)l C h as sorting 
key for the selection of enantiomorph-discriminating 
reflections. 

In Table 2 some results are given for four test 
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structures. For each of these structures the ten highest 
values of IEt(h)l C h are listed; most of these corre- 
spond to reflections with phases 45 < I(oLI < 135 °, 
which is close enough to I(oLI = 90 °. Fortunately, the 
following symbolic phase-expansion procedure is not 
adversely affected by individual phase errors! 

Symbolic-phase correlation. The ten reflections with 
the highest values of IE~(h)l C h and without internal ~2 
interactions (h + h' + h" = 0) are chosen, and symbols 
are assigned to the reflections. The symbols, denoted X, 
X' ,  ..., represent the phase values 90 or - 9 0  °. The 
assignment (o~,a = X implies a possible error which is 
less than 45 ° for most of the ten assignments. 

These ten reflections, together with all reflections of 
the set num, are input to a symbolic-phase generation 
procedure in order to find symbolic phases for as many 
reflections as possible. In addition to the interactions 
(1), which already were calculated, we now have 
interactions of the types: 

(oL(h) ~ (o~lum(k) + X ( h -  k) (6) 

and 

(OL(h) ~_ X(k) + X ' ( h - -  k) (7) 

with weights Khk (equation 2, Wt replaced by 1). The 60 
most probable results of (6) and (7) are used as a 
secondary set (Beurskens, 1964; Beurskens, Prick, Van 
den Hark & Gould, 1980) and used to generate many 
more symbolic phases. 

Multiple phase indications for one reflection then 
lead to relations between the symbols, which can be of 
the following types (all rood 360°): 

X = 0 or 180 ° (8a) 

X + X '  = 0 or 180 ° (8b) 

2 X = O  ° (8c) 

2 X =  180 ° (8d) 

X + X '  + X "  = 0 or 180 ° (8e) 

X + X '  + X "  + X" '  = 0 or 180 °. (8f)  

The relation (Sd) is a trivial identity. The relations (Sa), 
(8c) and (8e) are contradictions to the assumption that 
X is either 90 or - 9 0  °. These contradictions cannot be 
used to determine the value of the symbols, but they are 
interpreted as indications that the true value of the 
original phase is rather close to 0 or 180 °, and that 
symbols which are involved with many of these 
contradictions are less useful and will be weighted 
down. The relations (8f)  are very weak, and are not 
used. 

Thus we are left with the relations (8b). This is a set 
of symbol relations that can be coded in a binary way 
(X + X '  = 180 ° or X -  X '  = 0 ° means: X and X '  are 
equal; X + X '  = 0 ° or X - X '  = 180 ° means: X and 
X '  differ in phase by 180°). 

The equations are easily solved by the procedure 
S Y M A N  (Beurskens & Prick, 1981), using the anti- 
symmetric mode. The enantiomorph is fixed by 
arbitrarily assigning one numerical value (either + 90 or 
- 9 0  °) to one of the symbols. 

Note: if the input atoms have only an approximate 
centre of symmetry, the calculated phases are not 
exactly 0 or 180 °, and the enantiomorph is very weakly 
fixed by the intput atoms. In this case the arbitrary 
phase assignment to one of the symbols is not allowed, 
and a unique solution of the symbol equations (8) is 
obtained. As the calculated phases ((o~) can have any 
value, the right-hand sides of (8a) - (8f )  can also have 
any value; these equations are treated as complex 
vector equations and both the real and the imaginary 
parts will be used. Thus (8a) and (8e) may be given as 

sin(X) = sin ((O) (9a) 

s in(X + X '  + X " )  = sin((o). (9e) 

Most of the phases (o will be close to 0 or 180 °, but a 
large number of small deviations is sufficient to fix the 
absolute phase values of the symbols (without any 
arbitrary phase assignment). Thus the present enantio- 
morph-fixation procedure can be used and has proved 
to be very useful in the enhancement of the anti- 
symmetric part of the phase distribution. 

Finally, the numerical values for the symbols are 
substituted in (6) and (7), and all contributors to the 
phase of one reflection are added as follows: (a) the 
original numerical phase and all purely numerical terms 
are added with their proper weights; (b) all terms with 
symbols are added with their proper weights; (c) the 
results for (a) and for (b) are added with equal weight, 
or with double weight for ~um. The resulting phases no 
longer have a centric distribution. 

Refinement of  the difference structure factors. The 
majority of phases will have deviations from 0 or 180 ° 
in the correct direction, but many results will not be 
accurate. Therefore, the phases are subjected to 
DIRDIF tangent refinement, as described previously 
(part I). Only one or two cycles are sufficient, and there 
is no severe danger that the phases turn back to 0 or 
180 ° within one or two cycles. A change of phase is 
accompanied by an adjustment of the amplitude IFLI in 
order to satisfy the vector equation IFobsl = IF n + FLI. 
The final results for F n + F~ or for F L are used as input 
to a Fourier computer program for the calculation of 
an electron density map or a difference electron density 
map, respectively, to be referred to as 'DIRDIF-  
Fourier' map. 

(ib) One atom only 

The known heavy atom is situated at the origin and 
all calculated phases (o H are 0 °. The majority of the 
reflections will have (ol = 0°. Very few weak reflections 
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(with IFnl > IFobsl ) will have IE11 > 1.0. These 
reflections have tp~ = 180 ° and WI = 1.0; if these few 
reflections participate in the ~2-generation procedure, 
inconsistent contributions are encountered and the 
procedure described in (ia) will work. In cases where 
the heavy atoms do not dominate the intensity data, it 
is impossible to predict any ~0~ = 180 °. The phases 
~o~ = 0 ° will lead to a trivial consistency of all ~ 2 
interactions; all C h values (equation 5) are zero, and the 
procedure described in (ia) fails. We then choose the 
ten reflections with the lowest W~ (large IEll ) to be 
used as 'enantiomorph discriminating' reflections. The 
assignment of symbols, and the subsequent symbol 
analysis is as described in (ia), resulting in symbol 
phases +45 or - 4 5  ° (not +_135 ° , which is too far from 
0°). The following tangent refinement and Fourier 
synthesis will lead to an asymmetric DIRDIF-Fourier 
map. 

This procedure is not as strong as the one described 
in (ia), but it works. Firstly, the phases ~0~ (= 0 °) have 
large standard deviations, so the true phases (q~L) will 
probably deviate substantially from 0 °. Secondly, we 
have observed that arbitrary phase deviations from 0 ° 
will, upon weighted tangent refinement, lead to an 
asymmetric structural model in which one of the 
enantiomers is more pronounced than its mirror image. 
This simply means that physical significance can be 
attached to the results of the tangent refinement 
procedure. (This lemma is suggested by experiment; a 
similar experience was reported by Pontenagel, 1980). 

(ii) Origin fixation 

If the known part of the structure forms an 
arrangement of n identical subcells per unit cell, then 
only a fraction 1/n of all reflections will have non-zero 
values for F n. Thus we have an n-fold origin ambiguity, 
which can be solved by assignment of phases to one or 
more 'subcell extinctions' (with lEvi > 1.0, W1 = 0.0). 
The centrosymmetric analogue has been treated by 
Beurskens et al. (1980). In the centrosymmetric case, 
symbols are assigned to ten reflections of the 'weak' 
parity groups: the symbols represent phases 0 or 180°; 
after symbol analysis (procedure SFMAN, symmetric 
mode), the origin is fixed by arbitrarily assigning 0 or 
180 ° to one or more symbols. In the non-centro- 
symmetric case the same procedure is used; a phase, 
however, can have any value; and the procedure 
S Y M A N  is used both in symmetric and in anti- 
symmetric mode. [The right-hand sides of (8a) - (8f )  
can have any value; they are treated as complex vector 
equations l. The mean values of the symmetric (0 or 
180 ° ) and anti-symmetric (90 or - 9 0  ° ) solutions give 
the values +45, +135 ° , which cover all possible phases 
with a maximum error of 45 °. At this point phase 
refinement and a subsequent Fourier synthesis will lead 
to a DIRDIF-Fourier map where the extra trans- 
lational symmetry is destroyed. 

[Note that in (8a) - (8f )  the symmetric and anti- 
symmetric modes are not identical: for instance the two 
equations X = X '  and X = - X '  are identical in the 
symmetric mode, and they are contradictions in the 
anti-symmetric mode (Beurskens & Prick, 1981)1. 

In the above description of the origin-fixation 
procedure we have assumed that the problem at hand 
was a 'true' origin problem: i.e. a shift of origin from 
one of the heavy-atom subcells to any of the other 
subcells is equivalent to a shift from one 'permissible' 
origin to another 'permissible' origin (Hauptman, 
1972). Such a shift will not affect the phases of the 
structure seminvariants and it is only these reflections 
that are phased by the heavy atoms. In this case origin 
fixation is an arbitrary choice, and the use of 
two-symbol relations (equation 8b) is sufficient for the 
solution of the origin problem. 

On the other hand, the problem at hand may involve 
a superstructure where the subcell does not necessarily 
relate to parity classes. In this case the origin is 
restricted by the known atoms, but there is a 
translational ambiguity. The possible origin shifts, 
however, are different from the 'permissible' origin 
shifts. We are not allowed to assign arbitrary phase 
values to any of the symbols. As the set of two-symbol 
relations now has no solution, we must use one- or 
three-symbol reations, (8a) and (8e) (see Beurskens & 
Bosman, 1982). 

(iii) Origin and enantiomorph fixation 

Another special case is the combination of (i) and 
(ii): the known part, usually a heavy atom, forms a 
centrosymmetric subcell. This situation is simply 
treated as described under (ii). The introduction of 
phase values +45, + 135 ° to the symbols will define the 
origin as well as fix the enantiomorph. 

In the DIRDIF-Fourier map both the centre of 
symmetry and the extra translational symmetry are 
destroyed. 

Applications and test results 

The procedures described in this paper have been 
automated and implemented in the DIRDIF program 
system (Beurskens el al., 1981); they have been tested 
and used on more than 25 known (test) and unknown 
structures. In this section some typical results are 
presented. A review of the structures, used in this 
section, is given in Table 1. 

In Table 2 we present the results of the selection 
procedure for enantiomorph-discriminating reflections. 
We define d as the smallest absolute deviation of the 
true phase from 0 or 180 °. [The maximum value of A is 
90 ° , the average value for random phases is 45°.] 
Enantiomorph-discriminating reflections should have d 
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Table 1. Some examples of  structures used as test cases or solved by the present method 

Input 
Structure a toms  References  

SEZI Bis(L-serinato)zinc P2~ Van der Helm, Nicholas 
C6HI2N206Zn Z = 2 1Zn & Fisher (1970) 

OXYL 2'-Deoxycitidine HCI P2 t Subramanian & Hunt 
CgHI4CIN30 4 Z = 2 1CI (1970) 

MONOS A thio-indol derivative P2~212 t Noordik et al. (1978) 
CIsHI6N202S Z = 4 IS 

DIBFOM 4,4'-Diiodobenzophenone Ccc2 Van der Velden & 
C13HAI20 Z = 4 1I Noordik (1979) 

ALB Alborixin P2~ Busetta (1976) 
C,tsH84OI4K Z = 2 1K 

CaLACT Ca trilactate. 3H20 PI Pontenagel & 
CgHz2CaO12 Z = 1 1Ca Kanters (1983) 

MADRAS A nickel(II) complex P2~2~2 Parthasarathi, 
C76H64BBrNiP4 Z = 8 2Ni + 2Br Noordik & 

Monoharan (1982) 

Table 2. Deviations (A) from centric phases for 
enantiomorph-discriminating choices 

The test structures are defined in Table 1. 

SESI OXYL MONOS ALB 

IEtlC h A ( ° )  IEtlC h A ( ° )  IE~ICh A ( ° )  IEtlC h A ( ° )  

615 78 1755 69 562 56 1352 6 
428 67 286 77 506 47 1128 30 
174 77 207 62 396 82 1040 55 
96 69 202 81 380 80 1037 72 
79 90 199 35 361 41 950 80 
60 54 193 31 310 42 928 60 
50 79 185 70 292 88 880 52 
50 41 166 60 289 31 858 80 
49 67 142 31 256 6 810 21 
38 75 130 71 246 60 809 64 

(A) ° 70 59 53 52 
(IEtl) 1.71 2.02 1.93 1.98 

Table 3. Averaged A (°) for ten enantiomorph- 
discriminating choices, for two different weight 

limitations 

Limitation S E Z I  O X Y L  M O N O S  

W t < 0.9 70 59 53 
W l < 0.4 66 53 47 
N(changes)* 3 1 2 

* N(changes) is the number of  changes in the list of  ten reflections when 
the W~ limitation is reduced. 

Table 4. Final results for four test structures 

SESI O X Y L  M O N O S  AL B 

Number of independent 
heavy atoms 1 I 1 1 
remaining non-hydrogen 
atoms 14 16 19 62 

Sequence number of 
first error peak 6 13 15 8 
second error peak 11 16 16 11 

as large as possible. As we can see from the table, the 
procedure gives good results for few reflections. The 
largest I EIC h values lead to reliable selections, but 
some low IEIC h values lead to the selection of 
reflections (with small A) which should not have been 
selected. Fortunately, the symbolic-phasing procedure 
is not hampered by one or two bad choices (reflections 
with small A) because of the large number of 
symbolic-phase relationships that are used. The choice 
of ten for the number of enantiomorph-discriminating 
reflections is based on practical considerations (see 
below). Also, experience shows it is not advisable to 
reduce the weight limitation (W~ < 0.9) as it will reduce 
the number of reflections from which good enantio- 
morph-fixation choices can be selected. This is shown 
in Table 3. When we use W 1 < 0.4 instead of ~g 1 ( 0.9, 
the averaged A is reduced, showing that some of the 
best choices are discarded. 

The final results of the application of the present 
procedure to these three test cases are summarized in 
Table 4. Some comments on these tests and on the 
examples listed in Table 1 follow. 

SEZI and OXYL 

These rather small structures are typical cases, with 
one independent heavy atom in space group P2~. The 
enantiomorph problem is solved by the present pro- 
cedure. In a conventional difference Fourier syntheses 
the first erroneous peak will be peak number 2 which is 
an atom of the enantiomer, while in our procedure the 
first erroneous peak is significantly lower (see Table 4). 

MONOS 

One sulphur atom can be located by inspection of 
the Patterson map: the result x -- 0.00 (in space group 
P2~2121) implies a mirror plane (space group of the 
sulphur structure is Pnma). The structure was 
originally solved by using x = 0.02, thereby destroying 
the mirror symmetry: the remaining atoms were found 
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by an older version of the program DIRDIF. The 
present procedure does not depend on such personal 
intervention: with x = 0-00, the program will detect the 
presence of a centre of symmetry and automatically 
apply the present procedure. 

DIBFOM 

This was the first structure solved by the present 
procedure for enantiomorph fixation (ia). The iodine 
atom was found from the Patterson synthesis: x = 
0.049, y = 0.25; z = 0.0, chosen so as to fix the origin 
in the e direction. This heavy-atom position constitutes 
an enantiomorph and origin problem: the iodine 
structure has space group Fmmm. We moved the atom 
to y = 0.23 to eliminate the additional translation 
symmetry; this corresponds to fixing the origin with 
respect to the 1 ~0: ambiguity. The resulting iodine 
structure still has a centre of symmetry, its space group 
is Cmmm. The centric phase distribution was destroyed 
by the method described above. The complete rest 
structure (eight non-hydrogen atoms) was found from 
the first ten peaks of the DIRDIF--Fourier synthesis. 
(Note: we did not use procedure (iii) in this case, 
because it was not yet developed.) 

ALB 

This 'problem' structure was solved by Busetta 
(1976) using unconventional techniques. It was used as 
a test structure by Hull & Irwin (1978), where 50 phase 
sets had to be generated. With the present procedure 
(ia), using the potassium atom as input, the resulting 
collection of peaks was not easily interpretable; when, 
however, the 16 top peaks are used as input to a second 
run of the program (without enantiomorph dis- 
crimination) the complete structure was obtained. (A 
subsequent check showed that three of the initial 16 
peaks were wrong.) 

CaLACT 

This 'problem' structure was solved by Pontenagel & 
Kanters (1983) using unconventional techniques. The 
calcium atom ('one atom only') was placed at the 
origin, and the method (ib) resulted in a DIRDIF-  
Fourier map of which the six highest peaks are 
oxygens; the seventh peak has bad 'bond' angles and is 
not an atom. The rest of the structure is found if 
DIRDIF is restarted with one calcium and two or more 
oxygen atoms. 

MADRAS 

This was the first structure solved by the present 
procedure for enantiomorph and origin fixation (iii). 
The positions of the nickel and bromine atoms were 
obtained from the Patterson synthesis, but nickel and 
bromine atoms could not be distinguished. The corre- 
sponding heavy-atom structure, in space group Pbma 
with subcell a x b x ½e, is compatible with the space 

groups P2~212 ~ and P212~2. Application of DIRDIF in 
space group P21212 resolved the fourfold ambiguity of 
the eight phosphorous atoms. 

Some practical notes 

1. The reflections to be selected with numerical 
phase (set nurn) must have large weights, as the 
procedure relies upon their phases being 0 or 180 °. 

2. The number of reflections to be selected as 
enantiomorph-discriminating reflections is limited to 
about ten; if more are chosen, the number of incorrect 
choices increases; if less, the number of symbolic-phase 
relationships may be too small. 

3. Before the subsequent symbolic-phase expansion, 
the set hum (the starting set of reflections with 
numerical phases) is reduced by removing all reflections 
which have an enantiomorph discriminator larger than 
the average value. This increases the reliability of the 
set. 

4. The secondary set of reflections with symbolic 
phases should contain several reflections to each of the 
symbols. For ten symbols a secondary set should 
contain at least 30 reflections. If more than 60 are used 
the computer time and storage requirements increase 
rapidly. 

5. The symbolic-phase expansion is normally 
stopped when 4000 symbolic phases have been stored. 
This number of symbols is sufficient for small and 
medium structures; it may be increased for larger 
structures, but then the computer time also increases. 

6. After the enantiomorph-fixation procedure, each 
phase-refinement cycle is followed by a phase-resetting 
routine to counteract any drift of phases towards a 
centrosymmetric distribution. 

7. The phases resulting from the tangent refinement 
procedure are modified to enhance the asymmetry of 
the electron density map by doubling the anti- 
symmetric part of the electron density function. This is 
done by doubling the imaginary component of the 
structure factor. 

8. The unrefined reflections (i.e. reflections with, 
say, IEll < 0.9) are included in the final (difference) 
electron density function, using Sim's weights (Sim, 
1960), but multiplied by 0.5 after the enantiomorph- 
fixation procedure [(i)or (iii)]. 

Final comment 
r 

The procedure described in this paper can certainly be 
used when the known part of the structure consists of a 
molecular fragment (instead of one or more heavy 
atoms); investigations regarding adjustment of pro- 
gramming parameters for this case are in progress. 



576 DIRECT METHODS AND DIFFERENCE STRUCTURES. III 

The authors thank Dr B. Busetta (University of 
Bordeaux) and Dr W. M. G. F. Pontenagel (University 
of Utrecht) for making structural parameters (ALB) 
and intensity data (CaLACT) available, and we are 
grateful to R. C. Haltiwanger for helpful discussions. 

References 

BEURSKENS, P. T. (1964). Acta Cryst. A 17, 462. 
BEURSKENS, P. T. & BOSMAN, W. P. (1982). Z. Kristallogr. 159, 

139-140. 
BEURSKENS, P. T., BOSMAN, W. P., DOESBURG, H. M., GOULD, 

R. O., VAN DEN HARK, TH. E. M., PRICK, P. A. J., NOORDIK, 
J. H., BEURSKENS, G. & PARTHASARATHI, V. (1981). DIRDIF. 
Tech. Rep. 1981/2, Crystallography Laboratory, Toernooiveld, 
6525 ED Nijmegen, The Netherlands. 

BEURSKENS, P. T. & PRICK, P. A. J. (1981). Acta Cryst. A37, 
180-183. 

BEURSKENS, P. T., PRICK, P. m. J., DOESBURG, H. M. & GOULD, 
R. O. (1979). Acta Cryst. A35, 765-772. 

BEURSKENS, P. T., PRICK, P. A. J., VAN DEN HARK, TH. E. M. & 
GOULD, R. O. (1980). Acta Cryst. A36, 653-656. 

BUSETI'A, B. (1976). Acta Cryst. A32, 139-143. 

HAUPTMAN, H. (1972). Crystal Structure Determination. The Role 
of  the Cosine Seminvariants, p. 11. New York: Plenum. 

HULL, S. E. c~: IRWIN, M. J. (1978). Acta Cryst. A34, 863-870. 
KARLE, J. (1970). Crystallographic Computing Techniques, edited 

by F. R. AHMED, pp. 13--18. Copenhagen: Munksgaard. 
KARLE, J. & KARLE, I. L. (1966). Acta Cryst. 21, 849-859. 
NOORDIK, J. n. ,  BEURSKENS, P. T., OTTENHELIM, H. C. J., 

HERSCHEID, J. P. M. & TIJHUIS, M. W. (1978). Cryst. Struct. 
Commun. 7, 669-677. 

PARTHASARA'rHI, V., NOORDIK, J. H. & MANOHARAN, P. T. (1982). 
J. Cryst. Spectrosc. Res. 12, 191-204. 

PON'rENAGEL, W. M. G. F. (1980). Private communication. 
PONTENAGEL, W. M. G. F. & KAN'rERS, J. A. (1983). To be 

published. 
PmcK, P. A. J. (1979). Thesis (in Dutch), Univ. of Nijmegen. 

(Available on request.) 
PRICK, P. A. J., BEURSKENS, P. T. & GOULD, R. O. (1978). Acta 

Cryst. A34, $42. 
SIM, G. A. (1960).Acta Cryst. 13, 511-512. 
SUBRAMANIAN, E. & HUNT, D. J. (1970). Acta Cryst. B26, 

303-311. 
VAN DEN HARK, TH. E. M., PRICK, P. A. J. & BEURSKENS, P. T. 

(1976). Acta Cryst. A32, 816-821. 
VAN DER HELM, O., NICHOLAS, A. F. & FISHER, C. G. (1970). 

Acta Cryst. B26, 1172-1178. 
VAN DER VELDEN, G. P. M. & NOORDIK, J. H. (1979). J. Cryst. 

Mol. Struct. 9, 283-294. 

Acta Cryst. (1983). A39, 576-584 

Time-Like Perturbation Method in High-Energy Electron Diffraction 

BY D.  GRATIAS AND R. PORTIER 

CECM/CNRS, 15, rue G. Urbain, 94400 - Vitry, France 

(Received 8 December 1981; accepted 1 March 1983) 

Abstract  

The small-angle approximation usually encountered in 
dynamical theories of fast electrons essentially leads to 
a transformation of the propagation-direction variable 
z into a time-like parameter [Berry (1971). J. Phys. C, 
4, 697-722]. The three-dimensional stationary 
Schr6dinger equation is then approximated by a 
two-dimensional 'time'-dependent equation which may 
be solved by using the standard time-perturbation 
techniques encountered in quantum mechanics. The 
basic idea of the present approach consists in studying 
the evolution operator U(z,zo) instead of the wave 
function. Depending on the choice of bases, the matrix 
elements of U(z,zo) represent either the transition 
probabilities of diffraction or the kernel function of the 
propagation issued from Feynman-path integral theory 
[Berry & Mount (1972). Rep. Prog. Phys. 35, 315-397; 
Van Dyck (1975). Phys. Status Solidi, 72, 321-336; 

0108-7673/83/040576-09501.50 

Jap & Glaeser (1978). Acta Cryst. A34, 94-102]. 
Special attention is devoted to the so-called 'Bloch 
waves' and 'physical-optics' formulations which both 
correspond to the same perturbation expansion but 
with two different unperturbed 'Hamiltonians'. 

I. Introduction 

The dynamical theory of elastic scattering of fast 
electrons is of great importance for the understanding 
of contrast formation in electron microscopy and 
diffraction images. The methods which have been 
derived in the past twenty years may be classified in 
two general classes, those formally considering the 
crystal as an infinite three-dimensional medium (Bethe, 
1928; Darwin, 1914) and those considering the crystal 
as an infinite number of successive planes of 
infinitesimal thickness (Cowley & Moodie, 1957a,b). 
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